Hardness results and approximation algorithms for identifying codes and locating-dominating codes in graphs

نویسندگان

  • Sylvain Gravier
  • Ralf Klasing
  • Julien Moncel
چکیده

In a graph G = (V, E), an identifying code of G (resp. a locating-dominating code of G) is a subset of vertices C ⊆ V such that N [v]∩C 6= ∅ for all v ∈ V , and N [u] ∩C 6= N [v]∩C for all u 6= v, u, v ∈ V (resp. u, v ∈ V r C), where N [u] denotes the closed neighbourhood of v, that is N [u] = N(u) ∪ {u}. These codes model fault-detection problems in multiprocessor systems and are also used for designing location-detection schemes in wireless sensor networks. We give here simple reductions which improve results of the paper [I. Charon, O. Hudry, A. Lobstein, Minimizing the Size of an Identifying or Locating-Dominating Code in a Graph is NP-hard, Theoretical Computer Science 290(3) (2003), 2109–2120], and we show that minimizing the size of an identifying code or a locating-dominating code in a graph is APX-hard, even when restricted to graphs of bounded degree. Additionally, we give approximation algorithms for both problems with approximation ratio O(ln |V |) for general graphs and O(1) in the case where the degree of the graph is bounded by a constant.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximability of identifying codes and locating-dominating codes

We study the approximability and inapproximability of finding identifying codes and locating-dominating codes of the minimum size. In general graphs, we show that it is possible to approximate both problems within a logarithmic factor, but sublogarithmic approximation ratios are intractable. In bounded-degree graphs, there is a trivial constant-factor approximation algorithm, but arbitrarily lo...

متن کامل

New results on variants of covering codes in Sierpiński graphs

In this paper we study identifying codes, locating-dominating codes, and total-dominating codes in Sierpiński graphs. We compute the minimum size of such codes in Sierpiński graphs.

متن کامل

Identifying and Locating-Dominating Codes in (Random) Geometric Networks

We model a problem about networks built from wireless devices using identifying and locating-dominating codes in unit disk graphs. It is known that minimising the size of an identifying code is NP-complete even for bipartite graphs. First, we improve this result by showing that the problem remains NP-complete for bipartite planar unit disk graphs. Then, we address the question of the existence ...

متن کامل

Locating-Dominating Sets and Identifying Codes in Graphs of Girth at least 5

Locating-dominating sets and identifying codes are two closely related notions in the area of separating systems. Roughly speaking, they consist in a dominating set of a graph such that every vertex is uniquely identified by its neighbourhood within the dominating set. In this paper, we study the size of a smallest locating-dominating set or identifying code for graphs of girth at least 5 and o...

متن کامل

Exact values for three domination-like problems in circular and infinite grid graphs of small height

In this paper we study three domination-like problems, namely identifying codes, locating-dominating codes, and locating-total-dominating codes. We are interested in finding the minimum cardinality of such codes in circular and infinite grid graphs of given height. We provide an alternate proof for already known results, as well as new results. These were obtained by a computer search based on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Algorithmic Operations Research

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008